1 minute read

[CDA][SS] DiGA: Distil to Generalize and then Adapt for Domain Adaptive Semantic Segmentation

  • paper : https://arxiv.org/abs/2307.15063

  • git: https://github.com/fy-vision/DiGA

  • CVPR 2023 (‘23.09.12 인용수 1회)

  • downstream task : UDA for semantic segmentation

  • Contribution

    • warm-up stage:

      • Supervised learning뿐 아니라 feature-alignment loss를 teacher-student network끼리 주어 augmentation에 대해 robust한 generalizability를 확보
      • Cross-Domain-Mixture (CrDoMix) data augmentation을 주어 성능 향상
    • self-training stage:

      • Bilateral-consensus pseudo-supervision으로 threshold-free self-training 기법을 제안
        • feature-induced labels (pixel-to-centroids)
        • probability based labels (from warm-up model)
  • Warm-up stage

    • Supervised Loss → 기존 CE 와 동일

    • Distillation Loss : Class 정보를 알고 있는 source dataset에 대해

      • teacher 한테 weak augmentation / student한테 strong augmentation을 주어 symmetric KD Loss를 줌

        • $F^+, \phi^+$ : teacher의 encoder, teacher의 segmentation head
          • teacher는 Ema update
        • $F, \phi$ : student의 encoder, student의 segmentation head
      • fine-grained label에 의한 ovefitting 방지 목적으로 soft-label 사용

    • Cross-Domain-Mixture augmentation (CrDoMix)

      • Pretrained, Fixed Cycle GAN (Source 2 Target)을 활용!

      • binary mask를 사용하여 mixture

        • source data의 기하학적 모양을 헤치지 않음 → No label change!
        • 추가 batch 늘릴 필요가 없음
        • Target domain 정보를 흘려주며 학습 가능!
  • Threshold-free Self-Training

  • Centroids

    • GAP: Global Average Pooling
    • $x_{cdm}$ : 6번식 결과
    • $\phi$ : warmup Model의 feature
    • $\rho^k$ : k class의 centroid
    • Warm-up Model을 활용해서 Class centroid를 추출함 → Noise label voting 시에 활용할 목적
    • initial value : warmup model의 class-wise feature
  • Feature-induced labels

    • centroid와 teacher feature 간의 제일 similar한 class로 jk pixel을 label → local structure
  • Probability-based labels

    • pseudo-supervision based on Warmup Model prediction → global structure
  • Pseudo-supervison Loss

    • $p_t$: student prediction
  • Full objective

Updated: