less than 1 minute read

[UDA][OD] MTTrans: Cross-Domain Object Detection with Mean Teacher Transformer

  • paper: https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136690620.pdf
  • github: https://github.com/Lafite-Yu/MTTrans-OpenSource
  • ECCV 2022 accepted (인용수: 16회, ‘24-02-08 기준)
  • downstream task: UDA for OD

1. Motivation

  • OD에서 각광받는 DETR은 data-hungy, domain shift에 취약하다.

  • 이를 해결하기 위한 DETR계열에 특화된 DA방식에 대한 연구가 적었다.

    $\to$ 해결책을 제시해보자!

2. Contribution

  • MTTrans framework를 제시

    • pseudo label를 기반으로 하는 mean-teacher framework
    • multi-level cross domain alignment 제시
      • DQFA (Domain Query Feature Alignment) : global-image feature level alignment
      • BGPA (Bi-level Graph-based Prototype Alignment) : object-query로 만든 prototype로 align $\to$ instance-level alignment
      • TIFA (Token-wise Image Feature Alignment) : local-image feature level alignment
  • 3가지 UDA for OD benchmark에서 SOTA

3. MTTrans

  • overall framework

    • student model 상세 구조

      • Domain Query Feature Alignment : domain query간의 discriminator와 adversarial 하게 학습 (SFA에서 따옴)

      • Bi-level Graph-based Feature Alignment

        • Object query를 MLP 통과 시켜 만든 prototype K (=9)개를 similairity score를 weight로 하는 graph를 생성

        • 생성된 graph를 Graph Convolution Network (GCN)을 통과시켜 Loss를 산출

      • Token-wise Image Feature Alignment (TIFA) : Local image patch간의 domain alignment

    • Progressive Training

      • Burn-in : Pseudo label의 quality가 좋아야 하므로, source data로 supervised loss와 domain adversarial loss만 사용

      • Transfer training step

        • T: Object Detector
        • D: Discriminator

4. Experiments

  • Cityscapes2Foggy

  • Cityscapes2BDD100k

  • Sim10K2Cityscapes

  • Ablation Study

  • Visualization Analysis

Updated: