1 minute read

[MM] MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training

  • paper: https://arxiv.org/pdf/2403.09611
  • archived (인용수: 52회, ‘24-07-07 기준)

Abstract

  • MLLM의 다양한 architecture component 별, data choice별 학습 결과를 분석함
    • ex. Image Captioning only vs. Imange Captioning + Text-only dataset
  • 핵심적인 design lession 우순선위를 제안:
    • Image resolution = image-token 갯수 > visual connector 디자인

1. Introduction

  • in-context learning 능력 예시

  • Chain-of-Thought

2. Recipe for Building MM1

  • Architecture

    • Image encoder: ViT-L/14 with CLIP loss; resolution 336x336
    • Connector: C-Abstractor / Average Pooling
    • Language Model : 1.2B / 3.5B
  • Data

    • Caption images (45%) + Interleaved image-text documents (45%) + text-only (10%)
  • Training procedure

    • Contrastive Loss > Reconstruction Loss
  • Encoder Lesson

    • Image resolution > Model size > Training data composition

  • VL Connector Lesson:

    • visual token / image resolution은 영향을 끼침
    • VL connector type은 영향이 없음
  • Data Lesson

    • Captioning data : zero-shot performance에 긍정적
    • Interleaved image-text data + text-only data: few-shot performance에 긍정적
    • Captioned image : Interleaved image-text data : text-only data = 4:4:1 이 제일 성능 향상에 좋았음

3. Final Training Recipe

  • Image encoder: ViT-H/14 with CLIP loss; resolution 378x378

  • Connector: C-Abstractor (144 token)

  • Data: Captioned image : Interleaved image-text data : text-only data = 4:4:1

  • Model scaling: Model scale에 따라 최적의 learning rate를 extrapolate하여 도출

    • $\eta$: learning rate
    • N: # of parameters
  • MoE

    • top-2 gating으로 scaling 효과를 볼 수 있음 (LLM decoder-only 부분만 변경)
  • Final Pre-training Result

4. Supervised Fine-Tuning

  • LLaVA-NeXT와 같이 GPT-4V가 생성한 caption으로 학습 / 검증 데이터 수집 (1.45M examples)

  • Higher resolution

    • Pre-training 할때보다 고해상도 학습을 위해 positional embedding interpolation 수행 $\to$ 672x672

    • sub-image decompostion: 1344x1344 이미지를 672x672로 resize / sub-image로 나누어 처리

  • Lesson: Pre-training이 SFT의 성능 향상에 기여함

Updated: