[SSL] GCN: SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
[SSL] GCN: SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
- paper: https://arxiv.org/pdf/1609.02907.pdf
- github: https://github.com/tkipf/gcn
- ICLR 2017 accpeted (인용수: 31,192회 ‘24-02-15 기준)
- downstream task: Document classification for graph-based DB
1. Motivation
- graph-structured data를 효율적으로 처리하기 위한 Convolution Network의 효율적인 variant인 Graph-Convolution-Network가 필요함
2. Contribution
- Graph-structured data에 directly 적용 가능하고, layer-wise propagation이 가능한 graph-conv.-net을 제안함
- 1st order approximation of spectral graph convolution에서 동기를 얻음
- semi-sup. classification에 어떻게 적용할 수 있는지 제안함
3. GCN
-
propagation rule
- $\tilde{A}$: A+$I_N$
- A: Adjacent matrix. $a_{ij}=1$ if i and j node has at least one edge connected
- $I_N$: Identity matrix of shape N
- $H^{(l)}$: l번째 layer의 activation matrix $\in \mathbb{R}^{N \times D}$
- $W^{(l)}$: l번째 layer의 learnable weight matrix $\in \mathbb{R}^{N \times D}$
- $\tilde{A}$: A+$I_N$
-
reference: https://process-mining.tistory.com/176
-
위 식은 1st order approximation of localized spectral filters on graphs에 의해 motivated되었다고 함
-
Spectral Graph Convolution
-
Fourier domain에서 signal x와 filter $g_{\theta}$간의 곱으로 표현
-
U: Normalized graph Laplacian L의 eigenvectors
- $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
-
egienvalue decomposition은 너무 계산량이 크므로 Chebyshev polynomials로 k번째 eigenvalue까지 turncate하면
-
-
-
-
$\tilde{\Gamma}$에서 $\lambda_{max}$를 2로 근사하여 linear formulation으로 근사하면
-
이를 일반화 하면
-
Semi-superivesd Classification
-
foward process of a model
- A: adjacency matrix. $a_{ij}=1$ if i and j node has edge.
-
Loss
-
4. Experiments
-
Dataset
-
Results
-
Propagation function에 따른 ablation