less than 1 minute read

[SSL] GCN: SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

  • paper: https://arxiv.org/pdf/1609.02907.pdf
  • github: https://github.com/tkipf/gcn
  • ICLR 2017 accpeted (인용수: 31,192회 ‘24-02-15 기준)
  • downstream task: Document classification for graph-based DB

1. Motivation

  • graph-structured data를 효율적으로 처리하기 위한 Convolution Network의 효율적인 variant인 Graph-Convolution-Network가 필요함

2. Contribution

  • Graph-structured data에 directly 적용 가능하고, layer-wise propagation이 가능한 graph-conv.-net을 제안함
    • 1st order approximation of spectral graph convolution에서 동기를 얻음
  • semi-sup. classification에 어떻게 적용할 수 있는지 제안함

3. GCN

  • propagation rule

    • $\tilde{A}$: A+$I_N$
      • A: Adjacent matrix. $a_{ij}=1$ if i and j node has at least one edge connected
      • $I_N$: Identity matrix of shape N
    • $H^{(l)}$: l번째 layer의 activation matrix $\in \mathbb{R}^{N \times D}$
    • $W^{(l)}$: l번째 layer의 learnable weight matrix $\in \mathbb{R}^{N \times D}$

  • reference: https://process-mining.tistory.com/176

  • 위 식은 1st order approximation of localized spectral filters on graphs에 의해 motivated되었다고 함

  • Spectral Graph Convolution

    • Fourier domain에서 signal x와 filter $g_{\theta}$간의 곱으로 표현

      • U: Normalized graph Laplacian L의 eigenvectors

        • $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
      • egienvalue decomposition은 너무 계산량이 크므로 Chebyshev polynomials로 k번째 eigenvalue까지 turncate하면

  • $\tilde{\Gamma}$에서 $\lambda_{max}$를 2로 근사하여 linear formulation으로 근사하면

  • 이를 일반화 하면

  • Semi-superivesd Classification

    • foward process of a model

      • A: adjacency matrix. $a_{ij}=1$ if i and j node has edge.
    • Loss

4. Experiments

  • Dataset

  • Results

  • Propagation function에 따른 ablation

Updated: